Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Br J Haematol ; 196(4): 923-927, 2022 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1488181

RESUMEN

Patients who are severely affected by coronavirus disease 2019 (COVID-19) may develop a delayed onset 'cytokine storm', which includes an increase in interleukin-6 (IL-6). This may be followed by a pro-thrombotic state and increased D-dimers. It was anticipated that tocilizumab (TCZ), an anti-IL-6 receptor monoclonal antibody, would mitigate inflammation and coagulation in patients with COVID-19. However, clinical trials with TCZ have recorded an increase in D-dimer levels. In contrast to TCZ, colchicine reduced D-dimer levels in patients with COVID-19. To understand how the two anti-inflammatory agents have diverse effects on D-dimer levels, we present data from two clinical trials that we performed. In the first trial, TCZ was administered (8 mg/kg) to patients who had a positive polymerase chain reaction test for COVID-19. In the second trial, colchicine was given (0·5 mg twice a day). We found that TCZ significantly increased IL-6, α-Defensin (α-Def), a pro-thrombotic peptide, and D-dimers. In contrast, treatment with colchicine reduced α-Def and Di-dimer levels. In vitro studies show that IL-6 stimulated the release of α-Def from human neutrophils but in contrast to colchicine, TCZ did not inhibit the stimulatory effect of IL-6; raising the possibility that the increase in IL-6 in patients with COVID-19 treated with TCZ triggers the release of α-Def, which promotes pro-thrombotic events reflected in an increase in D-dimer levels.


Asunto(s)
Antiinflamatorios/uso terapéutico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Colchicina/uso terapéutico , Productos de Degradación de Fibrina-Fibrinógeno/análisis , alfa-Defensinas/inmunología , Anciano , Coagulación Sanguínea/efectos de los fármacos , COVID-19/sangre , COVID-19/inmunología , Síndrome de Liberación de Citoquinas/sangre , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Síndrome de Liberación de Citoquinas/inmunología , Femenino , Productos de Degradación de Fibrina-Fibrinógeno/inmunología , Humanos , Interleucina-6/sangre , Interleucina-6/inmunología , Masculino , Persona de Mediana Edad , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología
3.
Br J Haematol ; 194(1): 44-52, 2021 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1247138

RESUMEN

The inflammatory response to SARS/CoV-2 (COVID-19) infection may contribute to the risk of thromboembolic complications. α-Defensins, antimicrobial peptides released from activated neutrophils, are anti-fibrinolytic and prothrombotic in vitro and in mouse models. In this prospective study of 176 patients with COVID-19 infection, we found that plasma levels of α-defensins were elevated, tracked with disease progression/mortality or resolution and with plasma levels of interleukin-6 (IL-6) and D-dimers. Immunohistochemistry revealed intense deposition of α-defensins in lung vasculature and thrombi. IL-6 stimulated the release of α-defensins from neutrophils, thereby accelerating coagulation and inhibiting fibrinolysis in human blood, imitating the coagulation pattern in COVID-19 patients. The procoagulant effect of IL-6 was inhibited by colchicine, which blocks neutrophil degranulation. These studies describe a link between inflammation and the risk of thromboembolism, and they identify a potential new approach to mitigate this risk in patients with COVID-19 and potentially in other inflammatory prothrombotic conditions.


Asunto(s)
COVID-19/metabolismo , Inflamación/metabolismo , Tromboembolia/prevención & control , alfa-Defensinas/sangre , Adulto , Anciano , Animales , Coagulación Sanguínea/efectos de los fármacos , COVID-19/complicaciones , COVID-19/diagnóstico , COVID-19/virología , Estudios de Casos y Controles , Colchicina/farmacología , Femenino , Productos de Degradación de Fibrina-Fibrinógeno/análisis , Humanos , Inflamación/complicaciones , Interleucina-6/sangre , Interleucina-6/farmacología , Masculino , Ratones , Persona de Mediana Edad , Modelos Animales , Neutrófilos/efectos de los fármacos , Estudios Prospectivos , Factores de Riesgo , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Índice de Severidad de la Enfermedad , Tromboembolia/etiología , Trombosis/etiología , Trombosis/metabolismo , Moduladores de Tubulina/farmacología , alfa-Defensinas/farmacología
4.
J Clin Med ; 10(6)2021 Mar 13.
Artículo en Inglés | MEDLINE | ID: covidwho-1136509

RESUMEN

Membrane-bound angiotensin converting enzyme (ACE) 2 serves as a receptor for the Sars-CoV-2 spike protein, permitting viral attachment to target host cells. The COVID-19 pandemic brought into light ACE2, its principal product angiotensin (Ang) 1-7, and the G protein-coupled receptor for the heptapeptide (MasR), which together form a still under-recognized arm of the renin-angiotensin system (RAS). This axis counteracts vasoconstriction, inflammation and fibrosis, generated by the more familiar deleterious arm of RAS, including ACE, Ang II and the ang II type 1 receptor (AT1R). The COVID-19 disease is characterized by the depletion of ACE2 and Ang-(1-7), conceivably playing a central role in the devastating cytokine storm that characterizes this disorder. ACE2 repletion and the administration of Ang-(1-7) constitute the therapeutic options currently tested in the management of severe COVID-19 disease cases. Based on their beneficial effects, both ACE2 and Ang-(1-7) have also been suggested to slow the progression of experimental diabetic and hypertensive chronic kidney disease (CKD). Herein, we report a further step undertaken recently, utilizing this type of intervention in the management of evolving acute kidney injury (AKI), with the expectation of renal vasodilation and the attenuation of oxidative stress, inflammation, renal parenchymal damage and subsequent fibrosis. Most outcomes indicate that triggering the ACE2/Ang-(1-7)/MasR axis may be renoprotective in the setup of AKI. Yet, there is contradicting evidence that under certain conditions it may accelerate renal damage in CKD and AKI. The nature of these conflicting outcomes requires further elucidation.

5.
J Cell Mol Med ; 25(8): 3840-3855, 2021 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1116957

RESUMEN

Congestive heart failure (CHF) is often associated with kidney and pulmonary dysfunction. Activation of the renin-angiotensin-aldosterone system (RAAS) contributes to avid sodium retention, cardiac hypertrophy and oedema formation, including lung congestion. While the status of the classic components of RAAS such as renin, angiotensin converting enzyme (ACE), angiotensin II (Ang II) and angiotensin II receptor AT-1 is well studied in CHF, the expression of angiotensin converting enzyme-2 (ACE2), a key enzyme of angiotensin 1-7 (Ang 1-7) generation in the pulmonary, cardiac and renal systems has not been studied thoroughly in this clinical setting. This issue is of a special interest as Ang 1-7 counterbalance the vasoconstrictory, pro-inflammatory and pro-proliferative actions of Ang II. Furthermore, CHF predisposes to COVID-19 disease severity, while ACE2 also serves as the binding domain of SARS-CoV-2 in human host-cells, and acts in concert with furin, an important enzyme in the synthesis of BNP in CHF, in permeating viral functionality along TMPRSST2. ADAM17 governs ACE2 shedding from cell membranes. Therefore, the present study was designed to investigate the expression of ACE2, furin, TMPRSS2 and ADAM17 in the lung, heart and kidneys of rats with CHF to understand the exaggerated susceptibility of clinical CHF to COVID-19 disease. Heart failure was induced in male Sprague Dawley rats by the creation of a surgical aorto-caval fistula. Sham-operated rats served as controls. One week after surgery, the animals were subdivided into compensated and decompensated CHF according to urinary sodium excretion. Both groups and their controls were sacrificed, and their hearts, lungs and kidneys were harvested for assessment of tissue remodelling and ACE2, furin, TMPRSS2 and ADAM17 immunoreactivity, expression and immunohistochemical staining. ACE2 immunoreactivity and mRNA levels increased in pulmonary, cardiac and renal tissues of compensated, but not in decompensated CHF. Furin immunoreactivity was increased in both compensated and decompensated CHF in the pulmonary, cardiac tissues and renal cortex but not in the medulla. Interestingly, both the expression and abundance of pulmonary, cardiac and renal TMPRSS2 decreased in CHF in correlation with the severity of the disease. Pulmonary, cardiac and renal ADAM17 mRNA levels were also downregulated in decompensated CHF. Circulating furin levels increased in proportion to CHF severity, whereas plasma ACE2 remained unchanged. In summary, ACE2 and furin are overexpressed in the pulmonary, cardiac and renal tissues of compensated and to a lesser extent of decompensated CHF as compared with their sham controls. The increased expression of the ACE2 in heart failure may serve as a compensatory mechanism, counterbalancing the over-activity of the deleterious isoform, ACE. Downregulated ADAM17 might enhance membranal ACE2 in COVID-19 disease, whereas the suppression of TMPRSS2 in CHF argues against its involvement in the exaggerated susceptibility of CHF patients to SARS-CoV2.


Asunto(s)
Proteína ADAM17/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Furina/metabolismo , Insuficiencia Cardíaca/metabolismo , Serina Endopeptidasas/metabolismo , Proteína ADAM17/genética , Enzima Convertidora de Angiotensina 2/genética , Animales , COVID-19/genética , COVID-19/metabolismo , COVID-19/virología , Modelos Animales de Enfermedad , Expresión Génica , Insuficiencia Cardíaca/genética , Humanos , Riñón/metabolismo , Pulmón/metabolismo , Masculino , Miocardio/metabolismo , Ratas Sprague-Dawley , Sistema Renina-Angiotensina/fisiología , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/fisiología , Serina Endopeptidasas/genética
6.
Am J Physiol Lung Cell Mol Physiol ; 320(3): L422-L429, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1011024

RESUMEN

The unique clinical features of COVID-19 disease present a formidable challenge in the understanding of its pathogenesis. Within a very short time, our knowledge regarding basic physiological pathways that participate in SARS-CoV-2 invasion and subsequent organ damage have been dramatically expanded. In particular, we now better understand the complexity of the renin-angiotensin-aldosterone system (RAAS) and the important role of angiotensin converting enzyme (ACE)-2 in viral binding. Furthermore, the critical role of its major product, angiotensin (Ang)-(1-7), in maintaining microcirculatory balance and in the control of activated proinflammatory and procoagulant pathways, generated in this disease, have been largely clarified. The kallikrein-bradykinin (BK) system and chymase are intensively interwoven with RAAS through many pathways with complex reciprocal interactions. Yet, so far, very little attention has been paid to a possible role of these physiological pathways in the pathogenesis of COVID-19 disease, even though BK and chymase exert many physiological changes characteristic to this disorder. Herein, we outline the current knowledge regarding the reciprocal interactions of RAAS, BK, and chymase that are probably turned-on in COVID-19 disease and participate in its clinical features. Interventions affecting these systems, such as the inhibition of chymase or blocking BKB1R/BKB2R, might be explored as potential novel therapeutic strategies in this devastating disorder.


Asunto(s)
COVID-19/patología , Quimasas/metabolismo , Cininas/metabolismo , Sistema Renina-Angiotensina , SARS-CoV-2/aislamiento & purificación , COVID-19/metabolismo , COVID-19/virología , Humanos
7.
Front Physiol ; 11: 574753, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-890346

RESUMEN

Engulfed by the grave consequences of the coronavirus disease 2019 (COVID-19) pandemic, a better understanding of the unique pattern of viral invasion and virulence is of utmost importance. Angiotensin (Ang)-converting enzyme (ACE) 2 is a key component in COVID-19 infection. Expressed on cell membranes in target pulmonary and intestinal host cells, ACE2 serves as an anchor for initial viral homing, binding to COVID-19 spike-protein domains to enable viral entry into cells and subsequent replication. Viral attachment is facilitated by a multiplicity of membranal and circulating proteases that further uncover attachment loci. Inherent or acquired enhancement of membrane ACE2 expression, likely leads to a higher degree of infection and may explain the predisposition to severe disease among males, diabetics, or patients with respiratory or cardiac diseases. Additionally, once attached, viral intracellular translocation and replication leads to depletion of membranal ACE2 through degradation and shedding. ACE2 generates Ang 1-7, which serves a critical role in counterbalancing the vasoconstrictive, pro-inflammatory, and pro-coagulant effects of ACE-induced Ang II. Therefore, Ang 1-7 may decline in tissues infected by COVID-19, leading to unopposed deleterious outcomes of Ang II. This likely leads to microcirculatory derangement with endothelial damage, profound inflammation, and coagulopathy that characterize the more severe clinical manifestations of COVID-19 infection. Our understanding of COVID-ACE2 associations is incomplete, and some conceptual formulations are currently speculative, leading to controversies over issues such as the usage of ACE inhibitors or Ang-receptor blockers (ARBs). This highlights the importance of focusing on ACE2 physiology in the evaluation and management of COVID-19 disease.

8.
Front Immunol ; 11: 1312, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-615475

RESUMEN

Respiratory, circulatory, and renal failure are among the gravest features of COVID-19 and are associated with a very high mortality rate. A common denominator of all affected organs is the expression of angiotensin-converting enzyme 2 (ACE2), a protease responsible for the conversion of Angiotensin 1-8 (Ang II) to Angiotensin 1-7 (Ang 1-7). Ang 1-7 acts on these tissues and in other target organs via Mas receptor (MasR), where it exerts beneficial effects, including vasodilation and suppression of inflammation and fibrosis, along an attenuation of cardiac and vascular remodeling. Unfortunately, ACE2 also serves as the binding receptor of SARS viral spike glycoprotein, enabling its attachment to host cells, with subsequent viral internalization and replication. Although numerous reports have linked the devastating organ injuries to viral homing and attachment to organ-specific cells widely expressing ACE2, little attention has been given to ACE-2 expressed by the immune system. Herein we outline potential adverse effects of SARS-CoV2 on macrophages and dendritic cells, key cells of the immune system expressing ACE2. Specifically, we propose a new hypothesis that, while macrophages play an important role in antiviral defense mechanisms, in the case of SARS-CoV, they may also serve as a Trojan horse, enabling viral anchoring specifically within the pulmonary parenchyma. It is tempting to assume that diverse expression of ACE2 in macrophages among individuals might govern the severity of SARS-CoV-2 infection. Moreover, reallocation of viral-containing macrophages migrating out of the lung to other tissues is theoretically plausible in the context of viral spread with the involvement of other organs.


Asunto(s)
Betacoronavirus/metabolismo , Células Dendríticas/metabolismo , Pulmón/patología , Macrófagos Alveolares/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Enzima Convertidora de Angiotensina 2 , Betacoronavirus/inmunología , COVID-19 , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/patología , Células Dendríticas/inmunología , Células Dendríticas/virología , Humanos , Pulmón/virología , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/virología , Pandemias , Tejido Parenquimatoso/patología , Tejido Parenquimatoso/virología , Neumonía Viral/inmunología , Neumonía Viral/patología , Proto-Oncogenes Mas , Receptores Virales/metabolismo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA